A Method of Verified Computations for Solutions to Semilinear Parabolic Equations Using Semigroup Theory
نویسندگان
چکیده
This paper presents a numerical method for verifying the existence and local uniqueness of a solution for an initial-boundary value problem of semilinear parabolic equations. The main theorem of this paper provides a sufficient condition for a unique solution to be enclosed within a neighborhood of a numerical solution. In the formulation used in this paper, the initial-boundary value problem is transformed into a fixed-point form using an analytic semigroup. The sufficient condition is derived from Banach’s fixed-point theorem. This paper also introduces a recursive scheme to extend a time interval in which the validity of the solution can be verified. As an application of this method, the existence of a global-in-time solution is demonstrated for a certain semilinear parabolic equation.
منابع مشابه
Verified Computations for Solutions to Semilinear Parabolic Equations Using the Evolution Operator
This article presents a theorem for guaranteeing existence of a solution for an initial-boundary value problem of semilinear parabolic equations. The sufficient condition of our main theorem is derived by a fixed-point formulation using the evolution operator. We note that the sufficient condition can be checked by verified numerical computations.
متن کاملAn inverse problem of identifying the coefficient of semilinear parabolic equation
In this paper, a variational iteration method (VIM), which is a well-known method for solving nonlinear equations, has been employed to solve an inverse parabolic partial differential equation. Inverse problems in partial differential equations can be used to model many real problems in engineering and other physical sciences. The VIM is to construct correction functional using general Lagr...
متن کاملSemilinear parabolic partial differential equations—theory, approximation, and application
We present an abstract framework for semilinear parabolic problems based on analytic semigroup theory. The same framework is used for numerical discretization based on the finite element method. We prove local existence of solutions and local error estimates. These are applied in the context of dynamical systems. The framework is also used to analyze the finite element method for a stochastic p...
متن کاملPeriodic Boundary Value Problems for Semilinear Fractional Differential Equations
We study the periodic boundary value problem for semilinear fractional differential equations in an ordered Banach space. The method of upper and lower solutions is then extended. The results on the existence of minimal and maximal mild solutions are obtained by using the characteristics of positive operators semigroup and the monotone iterative scheme. The results are illustrated by means of a...
متن کاملVARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 55 شماره
صفحات -
تاریخ انتشار 2017